Forecast Model of Short-Term Sales in E-Commerce Based on BP-AdaBoost
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    E-commerce is a new business mode on a large scale and with great potential that is flourishing along with the emerging Internet technology. Forecasting short-term sales of products can help e-commerce companies respond more quickly to market changes. This study establishes a forecast model of short-term sales applied to the e-commerce accounting system based on historical data on e-commerce sales and clicks on portal products. With the adoption of AdaBoost idea, the forecast results of multiple traditional BP neural networks are assembled, leading to a higher accuracy. According to the characteristics of the short-term sales in e-commerce, we plan the timing design of time window and establish a forecast model of sales in the unit of day considering the weekend effect. Experiments show that the forecast error of this model can be controlled within 20%.

    Reference
    Related
    Cited by
Get Citation

王丽红.基于BP-AdaBoost的电商短期销量预测模型.计算机系统应用,2021,30(2):260-264

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 23,2020
  • Revised:July 21,2020
  • Adopted:
  • Online: January 29,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063