Forecast Model of Short-Term Sales in E-Commerce Based on BP-AdaBoost
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    E-commerce is a new business mode on a large scale and with great potential that is flourishing along with the emerging Internet technology. Forecasting short-term sales of products can help e-commerce companies respond more quickly to market changes. This study establishes a forecast model of short-term sales applied to the e-commerce accounting system based on historical data on e-commerce sales and clicks on portal products. With the adoption of AdaBoost idea, the forecast results of multiple traditional BP neural networks are assembled, leading to a higher accuracy. According to the characteristics of the short-term sales in e-commerce, we plan the timing design of time window and establish a forecast model of sales in the unit of day considering the weekend effect. Experiments show that the forecast error of this model can be controlled within 20%.

    Reference
    [1] 夏平, 杨继平. 电商行业财务数据与大数据耦合协同评价. 财会月刊, 2020, (9): 27–34
    [2] 路澳征, 张媛媛. “互联网+创新创业”背景下农村电商的模式探索. 福建茶叶, 2020, 42(4): 33–34. [doi: 10.3969/j.issn.1005-2291.2020.04.026
    [3] 申容宇. 探析“互联网+”时代跨境电商发展问题及对策. 智库时代, 2020, (15): 41–42
    [4] 车久菊. B2C电子商务模式下电商企业经营模式变革. 中外企业家, 2020, (11): 88–89
    [5] 刘振, 宋寒, 代应, 等. 新零售”背景下的电商企业渠道决策——基于体验店服务水平与市场需求. 财会月刊, 2020, (8): 115–122
    [6] 李寿喜, 汪梦晓. 我国收入会计准则变动对电商企业会计核算的影响. 会计之友, 2018, (5): 142–144. [doi: 10.3969/j.issn.1004-5937.2018.05.033
    [7] 李贞. 互联网环境下电子商务营销渠道优化探索. 财富时代, 2020, (5): 43
    [8] 付敏娟. 基于指数平滑与神经网络模型的太阳能热水器销售预测[硕士学位论文]. 湘潭: 湘潭大学, 2017.
    [9] 圣文顺, 赵翰驰, 孙艳文. 基于改进遗传算法优化BP神经网络的销售预测模型. 计算机系统应用, 2019, 28(12): 200–204. [doi: 10.15888/j.cnki.csa.007174
    [10] 王建伟. 基于商品聚类的电商销量预测. 计算机系统应用, 2016, 25(10): 162–168. [doi: 10.15888/j.cnki.csa.005423
    [11] 王菲. 一种基于自适应遗传BP算法的神经网络目标分类器设计方法. 自动化技术与应用, 2007, 26(12): 80–82. [doi: 10.3969/j.issn.1003-7241.2007.12.029
    [12] Hinton GE, Nowlan SJ. The bootstrap widrow-hoff rule as a cluster-formation algorithm. Neural Computation, 1990, 2(3): 355–362. [doi: 10.1162/neco.1990.2.3.355
    [13] 朱兴统. 基于改进粒子群优化BP网络的城市用水量预测. 计算机与现代化, 2012, (8): 21–23, 27. [doi: 10.3969/j.issn.1006-2475.2012.08.006
    [14] Hansen LK, Salamon P. Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993–1001. [doi: 10.1109/34.58871
    [15] 张晶. 基于AdaBoost回归树的多目标预测算法. 计算机与现代化, 2017, (9): 89–95, 105. [doi: 10.3969/j.issn.1006-2475.2017.09.017
    [16] 闫博, 周在金, 李国和, 等. 基于ARMA和BP_AdaBoost的组合销售预测模型研究. 计算机与现代化, 2015, (2): 14–18. [doi: 10.3969/j.issn.1006-2475.2015.02.004
    [17] 王雪蓉, 万年红. 基于跨境电商可控关联性大数据的出口产品销量动态预测模型. 计算机应用, 2017, 37(4): 1038–1043, 1050. [doi: 10.11772/j.issn.1001-9081.2017.04.1038
    [18] Ghavamipoor H, Golpayegani SAH. A reinforcement learning based model for adaptive service quality management in E-Commerce websites. Business & Information Systems Engineering, 2020, 62(2): 159–177
    [19] Zahari A, Jaafar J. Combining hidden markov model and case based reasoning for time series forecasting. Proceedings of the 13th International Conference on Intelligent Software Methodologies, Tools and Techniques. Langkawi, Malaysia . 2015. 237–247.
    [20] 孙钰. 基于数据挖掘的电商促销活动效应与销量预测研究[硕士学位论文]. 上海: 东华大学, 2017.
    [21] 黄文明. 基于深度学习的商品销量预测研究[硕士学位论文]. 南京: 南京理工大学, 2019.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王丽红.基于BP-AdaBoost的电商短期销量预测模型.计算机系统应用,2021,30(2):260-264

Copy
Share
Article Metrics
  • Abstract:1035
  • PDF: 2502
  • HTML: 1798
  • Cited by: 0
History
  • Received:June 23,2020
  • Revised:July 21,2020
  • Online: January 29,2021
Article QR Code
You are the first1025880Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063