Improved CART Decision Tree Regression Algorithm Based on ELM
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to increase the accuracy of the Classification And Regression Tree (CART) regression algorithm, we propose an improved CART regression algorithm based on Extreme Learning Machine (ELM-CART for short). The proposed algorithm mainly applies the ELM for modeling at each leaf node in the process of creating a CART, which can get the true regression prediction value, improve the generalization ability, and compensate for such disadvantages of the CART regression algorithm as easy overfitting and constant predictive output. The experimental results show that the proposed algorithm can effectively improve the prediction accuracy of target data in regression analysis, and its accuracy is higher than that of the counterparts.

    Reference
    [1] 冷建飞, 高旭, 朱嘉平. 多元线性回归统计预测模型的应用. 统计与决策, 2016, (7): 82–85
    [2] 谢永华, 张鸣敏, 杨乐, 等. 基于支持向量机回归的城市PM2.5浓度预测. 计算机工程与设计, 2015, 36(11): 3106–3111
    [3] 张棪, 曹健. 面向大数据分析的决策树算法. 计算机科学, 2016, 43(S1): 374–379, 383
    [4] 徐睿, 梁循, 齐金山, 等. 极限学习机前沿进展与趋势. 计算机学报, 2019, 42(7): 1640–1670
    [5] 侯大力, 孙雷, 潘毅, 等. 人工神经网络预测高含CO2天然气的含水量. 西南石油大学学报(自然科学版), 2013, 35(4): 121–125. [doi: 10.3863/j.issn.1674-5086.2013.04.017
    [6] Sut N, Simsek O. Comparison of regression tree data mining methods for prediction of mortality in head injury. Expert Systems with Applications, 2011, 38(12): 15534–15539. [doi: 10.1016/j.eswa.2011.06.006
    [7] Müller D, Leitão P J, Sikor T. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agricultural Systems, 2013, 117: 66–77. [doi: 10.1016/j.agsy.2012.12.010
    [8] Park Y, Pachepsky YA, Cho KH, et al. Stressor–response modeling using the 2D water quality model and regression trees to predict chlorophyll-a in a reservoir system. Journal of Hydrology, 2015, 529: 805–815. [doi: 10.1016/j.jhydrol.2015.09.002
    [9] Larraondo PR, Inza I, Lozano JA. A system for airport weather forecasting based on circular regression trees. Environmental Modelling & Software, 2018, 100: 24–32
    [10] 董红召, 许慧鹏, 卢滨, 等. 城市交通道路氮氧化物浓度的CART回归树预测研究. 环境科学学报, 2019, 39(4): 1086–1094
    [11] 郑向群, 赵政. 基于S-CART决策树的多关系空间数据挖掘方法. 计算机应用, 2008, 28(3): 749–752
    [12] 杜春蕾, 张雪英, 李凤莲. 改进的CART算法在煤层底板突水预测中的应用. 工矿自动化, 2014, 40(12): 52–56
    [13] 刘云翔, 吴浩. 基于改进CART决策树建立水华预警模型. 中国农村水利水电, 2018, (1): 26–28. [doi: 10.3969/j.issn.1007-2284.2018.01.007
    [14] 毕云帆, 张健, 胥晓晖, 等. 基于梯度提升决策树的电力短期负荷预测模型. 青岛大学学报(工程技术版), 2018, 33(3): 70–75
    [15] 李正方, 杜景林, 周芸. 基于改进CART算法的降雨量预测模型. 现代电子技术, 2020, 43(2): 133–137, 141
    [16] Huang GB, Zhu QY, Siew CK. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1–3): 489–501
    [17] 甘露. 极限学习机的研究与应用[硕士学位论文]. 西安: 西安电子科技大学, 2014.
    [18] Loh WY. Classification and regression trees. Wires Data Mining and Knowledge Discovery, 2011, 1(1): 14–23. [doi: 10.1002/widm.8
    [19] 苏锑, 杨明, 王春香, 等. 一种基于分类回归树的无人车汇流决策方法. 自动化学报, 2018, 44(1): 35–43
    [20] Breiman L, Friedman J, Olshen R, et al. Classification and Regression Trees. New York: Chapman and Hall, 1984.
    [21] 苗红星, 余建坤. 基于决策树的ID3算法和C4.5算法的比较. 现代计算机(专业版), 2014, (15): 7–10, 14
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王宏,张强,王颖,郭玉洁.基于ELM的改进CART决策树回归算法.计算机系统应用,2021,30(2):201-206

Copy
Share
Article Metrics
  • Abstract:1177
  • PDF: 2041
  • HTML: 1968
  • Cited by: 0
History
  • Received:June 23,2020
  • Revised:July 14,2020
  • Online: January 29,2021
Article QR Code
You are the first990402Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063