LSTM-Based Unsupervised Domain Adaptive Person Re-Identification
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this study, we propose a method of unsupervised domain adaptive person re-identification. Given a labeled source-domain training set and an unlabeled target-domain training set, we explore how to improve the generalization ability of the person re-identification model on the target-domain test set. For this purpose, during the training of the model, the source-domain and target-domain training sets are simultaneously input into the model for training. While extracting global features, we extract local features to describe the person images and learn more fine-grained features. Furthermore, we apply Long Short-Term Memory (LSTM) for the modeling of a person in an end-to-end manner, treating the person as a sequence of body parts from the head to feet. Specifically, the method in this paper mainly includes two steps: (1) StarGAN is adopted to enhance the data of unlabeled target domain images; (2) the data sets of source domain and target domain are input into global branch and LSTM-based local branch at the same time for joint training. Finally, on the Market-1501 and DukeMTMC-reID data sets, the proposed model has achieved sound performance, which fully reflects its effectiveness.

    Reference
    Related
    Cited by
Get Citation

胡卓晶,王敏.基于LSTM的无监督域自适应行人重识别.计算机系统应用,2021,30(2):182-187

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 10,2020
  • Revised:July 10,2020
  • Adopted:
  • Online: January 29,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063