Dictionary Learning Performance Analysis Based on Combination of Vector Representations
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the dictionary learning algorithms, the model by the multi-vector representation can obtain better classification performance and more robustness than that by the single vector representation. In this study, we use the combined representation fused multiple vector representations and reasonable weighted logarithms sum schemes to improve the performance of the dictionary algorithm. Experiments on public face datasets verify that dictionary learning algorithms applied with proposed method has higher accuracy and robustness. It illustrates that the various potential appearances of observed objects generated by fully mining and utilizing the diversity of representations are beneficial to improve the performance of images classification.

    Reference
    Related
    Cited by
Get Citation

焦健雄,孙利雷,徐勇.基于矢量表示组合的字典学习性能分析.计算机系统应用,2021,30(1):174-179

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 03,2020
  • Revised:June 30,2020
  • Adopted:
  • Online: December 31,2020
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063