Static Hand Gesture Recognition Based on Multi-Feature Weighted Fusion
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Static hand gesture recognition based on multi-feature weighted fusion is proposed to solve the problems of singularity and omission in convolutional neural network for feature extraction. Firstly, the Fourier and Hu moments of the segmented gesture image are extracted and fused as the local features. Besides, a dual-channel convolutional neural network is designed to extract the deep features of the gesture image, which are further treated by dimensionality reduction by principal component analysis. Secondly, the extracted local and deep features are weighted and fused as effective description for hand gesture recognition. Finally, gesture images are classified with Softmax classifier. Experimental results verify the proposed method, and the recognition accuracy reaches over 99% on the image dataset.

    Reference
    Related
    Cited by
Get Citation

陈影柔,田秋红,杨慧敏,梁庆龙,包嘉欣.基于多特征加权融合的静态手势识别.计算机系统应用,2021,30(2):20-27

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 28,2020
  • Revised:June 19,2020
  • Adopted:
  • Online: January 29,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063