Image Inpainting Based on New Encoder and Similarity Constraint
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The existing image repair methods have some problems such as obvious trace, semantic discontinuity, unclear, etc. To solve these problems, this study proposes an image repair method based on a new encoder and context-aware loss. In this paper, the generative adversarial network is adopted as the basic network architecture. In order to fully learn the image features and get clearer repair results, SE-ResNet is introduced to extract the effective features of the image. At the same time, the joint context-aware loss training generating network is proposed to constrain the similarity of local features, so that the repaired image is closer to the original and more real and natural. Experiments on multiple public datasets in this paper prove that the proposed method can repair the damaged images better.

    Reference
    Related
    Cited by
Get Citation

林竹,王敏.基于新编码器和相似度约束的图像修复.计算机系统应用,2021,30(1):122-128

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 23,2020
  • Revised:June 16,2020
  • Adopted:
  • Online: December 31,2020
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063