Android Malware Detection Based on textCNN Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the problem that the current Android malware detection method has insufficient ability to detect unknown applications, this study proposes an Android malware detection method based on the textCNN neural network model. This method uses a variety of trigger mechanisms to induce the potential malicious behavior of the application from different levels. For function calls at different levels, the specific hook technology is used to collect the application behavior. For the collected behavior logs, the fastText algorithm is used to extract word vectors. Finally, the textCNN model is used to detect and identify Android applications based on behavior logs. Experimental results show that the average accuracy of the method for detecting Android malicious applications reaches 93.3%, which verifies that the method has high effectiveness and correctness for detecting Android malwares.

    Reference
    Related
    Cited by
Get Citation

张雄冠,邵培南.基于textCNN模型的Android恶意程序检测.计算机系统应用,2021,30(1):114-121

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 19,2020
  • Revised:June 16,2020
  • Adopted:
  • Online: December 31,2020
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063