Pathological Recognition of Apple Leaves Based on Deeply Separable Convolution
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this study, we take a few kinds of leaf diseases of apple tree, such as Alternaria mali Roberts, as research objects, and a pathological identification method for apple tree leaf diseases based on depth-separable convolution is designed. The probability data enhancement is used to amplify the original dataset, a deep separable convolutional neural network is explored by using transductive transfer learning, and is applied to crop pathological recognition. An in-depth learning model for restricted equipment is designed to recognize and classify the apple tree leaf diseases, and the model is compressed, transformed, and transplanted to an embedded system for verification. The experimental results show that the proposed method has a good recognition effect, the recognition rate is up to 85.96% in the restricted equipment.

    Reference
    Related
    Cited by
Get Citation

王健,刘雪花.基于深度可分离卷积的苹果叶病理识别.计算机系统应用,2020,29(11):190-195

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 12,2020
  • Revised:April 14,2020
  • Adopted:
  • Online: October 30,2020
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063