Aspect Level Sentiment Classification Based on Sentence Structure Information
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aspect level sentiment analysis is a more fine-grained sub task of sentiment analysis tasks, the purpose of which is to predict sentiment tendencies of a certain aspect. At present, most aspect level sentiment analysis tasks use neural networks to extract semantic information of sentences, and then predict emotional polarity. Based on this, this study proposes a semantic representation method based on sentence structure information, that is, the fusion of sentence structure information in the part of speech sequence of the statement. In this work, two Bi-LSTM are used to extract the semantic feature and the structural feature of the statement, and the semantic representation based on sentence structure is constructed. Then, the given aspect level vectorization is embedded into the semantic representation based on the sentence structure, and then sent to the Softmax layer for sentiment classification. Experiments show that the semantic representation method based on the information of sentence structure is more effective.

    Reference
    Related
    Cited by
Get Citation

李梦磊,刘新,赵梦凡,李聪.基于语句结构信息的方面级情感分类.计算机系统应用,2020,29(11):114-120

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 24,2020
  • Revised:April 24,2020
  • Adopted:
  • Online: October 30,2020
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063