Chinese Patent Text Classification Based on BiLSTM_ATT _CNN Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the development of big data and artificial intelligence, it is possible to transform the manual processing of patents into automated processing. In this study, combined with the advantages of Convolutional Neural Network (CNN) to extract local features and Two-way Long and Short Term Memory neural network (BiLSTM) to serialize and extract global features, the attention mechanism is introduced in the hidden layer of BiLSTM, and a BiLSTM_ATT_CNN combination model for Chinese patent text data is proposed. The BiLSTM_ATT_CNN combined model improves the accuracy of Chinese patent text classification by designing multiple comparison experiments.

    Reference
    Related
    Cited by
Get Citation

杜恒欣,朱习军.基于BiLSTM_ATT_CNN中文专利文本分类.计算机系统应用,2020,29(11):260-265

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 11,2020
  • Revised:April 12,2020
  • Adopted:
  • Online: October 30,2020
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063