Focused Mean Square Loss Function Design in Convolutional Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to improve the accuracy of the human pose estimation task of convolutional neural networks, we propose an improved loss function based on Mean Squared Error (MSE) to deal with the pixel imbalance between foreground (Gaussian kernel) and background in heatmaps, assign different weights to the loss function according to different pixel values in the foreground and background, and named it Focus Mean Squared Error (FMSE). Compared with the mean squared loss function, the proposed focused mean squared loss function can effectively reduce the impact of pixel imbalance between foreground and background on network performance, help the network locate the spatial location of key points, improve network performance, and make the loss function converge faster in the training phase. Experiments are performed on public data sets to verify the effectiveness of the proposed focused mean square loss function.

    Reference
    Related
    Cited by
Get Citation

徐锐,冯瑞.卷积神经网络的聚焦均方损失函数设计.计算机系统应用,2020,29(10):133-140

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 25,2020
  • Revised:April 21,2020
  • Adopted:
  • Online: September 30,2020
  • Published: October 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063