Vehicle Recognition Algorithm Based on Dense-YOLOv3
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The traditional YOLOv3 network structure has poor robustness in extracting features such as over exposure or dark light, which leads to low recognition rate. A Dense-YOLOv3 model for traffic vehicle classification is proposed. The model integrates the characteristics of dense convolutional neural network DenseNet and YOLOv3 network, which strengthen the vehicle model feature propagation and reuse between convolution layers, and improve the anti-overfitting performance of the network. At the same time, the target vehicle is detected at different scales, and the cross-loss function is constructed to realize the multi-objective detection of the vehicle model. The model is trained and tested on BIT-Vehicle standard data sets. The experimental results show that the average accuracy of the model based on Dense-YOLOv3 vehicle detection reaches 96.57% and the recall rate is 93.30%, which indicates the effectiveness and practicability of the model for vehicle detection.

    Reference
    [1] 张富凯, 杨峰, 李策. 基于改进YOLOv3的快速车辆检测方法. 计算机工程与应用, 2019, 55(2): 12-20. [doi: 10.3778/j.issn.1002-8331.1810-0333
    [2] 石磊, 王亚敏, 曹仰杰, 等. 基于深度卷积神经网络的车型识别. 计算机科学, 2018, 45(5): 280-284
    [3] 何霞, 汤一平, 袁公萍, 等. 基于级联多任务深度学习的卡口识别引擎研究. 计算机科学, 2019, 46(1): 303-308. [doi: 10.11896/j.issn.1002-137X.2019.01.047
    [4] 王思元, 王俊杰. 基于改进YOLOv3算法的高密度人群目标实时检测方法研究. 安全与环境工程, 2019, 26(5): 194-200
    [5] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 2014. 580-587.
    [6] He KM, Zhang XY, Ren SQ, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9): 1904-1916
    [7] Girshick R. Fast R-CNN. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile. 2015. 1440-1448.
    [8] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149
    [9] He KM, Gkioxari G, Dollár P, et al. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397
    [10] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 6517-6525.
    [11] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot MultiBox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands. 2016. 21-37.
    [12] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 779-788.
    [13] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv: 1804.02767, 2018.
    [14] 徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法. 计算机工程与应用, 2019, 55(6): 13-23. [doi: 10.3778/j.issn.1002-8331.1812-0010
    [15] 王琳, 卫晨, 李伟山, 等. 结合金字塔池化模块的YOLOv2的井下行人检测. 计算机工程与应用, 2019, 55(3): 133-139. [doi: 10.3778/j.issn.1002-8331.1710-0236
    [16] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.
    [17] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 2261-2269.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

陈立潮,王彦苏,曹建芳.基于Dense-YOLOv3的车型检测模型.计算机系统应用,2020,29(10):158-166

Copy
Share
Article Metrics
  • Abstract:1305
  • PDF: 2780
  • HTML: 3364
  • Cited by: 0
History
  • Received:March 03,2020
  • Revised:March 27,2020
  • Online: September 30,2020
  • Published: October 15,2020
Article QR Code
You are the first990999Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063