IIoT Intelligent Intrusion Detection Based on Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    How to effectively identify the intrusion attack behavior of the Industrial Internet of Things (IIOT) is a new challenge. Aiming at the problems of low intrusion detection feature extraction, low detection efficiency, and poor adaptability in IIOT, an intelligent intrusion detection method based on deep learning is proposed. First, improve the sampling algorithm in data processing for adjusting the number of samples in a few categories to improve the detection accuracy. Second, build a stacked denoising convolutional self-encoding network to extract key features. Combine the convolutional neural network and the denoising self-encoder to enhance feature recognition ability. In order to avoid information loss and information ambiguity, improve the pooling operation to increase its adaptive processing ability, and use Adam algorithm to obtain the optimal parameters during model training. Finally, use the NSL-KDD dataset to test the performance of the proposed method. Experimental results show that the accuracy of the method is 3.66%, 4.93%, and 0.04% higher than the existing RNN, DBN, and IDMBCNN, respectively. Compared with the SDCAENN test without sampling algorithm, the detection accuracy of U2R and R2L is improved by 17.57 % and 3.28%.

    Reference
    Related
    Cited by
Get Citation

胡向东,周巧.基于深度学习的工业物联网智能入侵检测.计算机系统应用,2020,29(9):47-56

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 18,2020
  • Revised:March 17,2020
  • Adopted:
  • Online: September 07,2020
  • Published: September 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063