Chinese Named Entity Recognition in Medical Field Using CTD-BLSTM Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to retain more characteristic information in the training process, this study uses pre-training word vector and fine-tuning word vector to extend Bi-directional Long Short-Term Memory network (Bi-LSTM), and combines the co-training semi-supervision method to deal with the feature of sparse annotated text in the medical field. An improved model of Co-Training Double word embedding conditioned Bi-LSTM (CTD-BLSTM) is further proposed for Chinese named entity recognition. Experiments show that compared with the original BLSTM and BLSTM-CRF, the CTD-BLSTM model has higher accuracy and recall rate in the absence of corpora, the proposed method can better support the construction of medical knowledge graph and the development of knowledge answering system.

    Reference
    Related
    Cited by
Get Citation

祝锡永,吴炀,刘崇.基于CTD-BLSTM的医疗领域中文命名实体识别模型.计算机系统应用,2020,29(8):173-178

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 22,2020
  • Revised:February 27,2020
  • Adopted:
  • Online: July 31,2020
  • Published: August 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063