Correlation Analysis and Vectorization Method for Spatial Position
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Understanding the spatial correlation of places plays an important role in geographic information retrieval and recommendation systems, urban traffic management, and resident travel pattern exploration. In order to represent the places and their spatial relationships specifically, we propose a deep learning-based vectorization method for places. The correlation between places can be calculated by the place vectors. Firstly, the trajectories of long-distance and short-distance are matched and connected to build a large-scale traffic network, which could cover multiple travel modes and obtain a complete cognition of spatial relations. Then we propose a spatial vectorization method which is based on graph neural network and combines place features and trajectory information. Besides, we improve the representation ability of latent representations for places by optimizing a node sampling method. Finally, the empirical analysis is performed on the shared bicycle track data and public traffic data in Beijing. The result demonstrates that the proposed method outperforms the existing methods such as DeepMove on place correlation analysis and cluster analysis.

    Reference
    Related
    Cited by
Get Citation

张舒,郭旦怀,周纯葆,李薰春,靳薇.空间位置的关联分析及其向量化表示方法.计算机系统应用,2020,29(9):32-39

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 27,2020
  • Revised:March 17,2020
  • Adopted:
  • Online: September 07,2020
  • Published: September 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063