Detection of Abnormal Traffic in Industrial Control Network Based on LSTM Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the problems of low recognition accuracy and low recognition efficiency in the current abnormal flow detection methods of industrial control network, combined with the periodic characteristics of industrial control networks, this study proposes an abnormal flow detection model based on Long-Short Term Memory network (LSTM) time series prediction. This model takes the LSTM network model as the core, and uses the normal historical traffic sequence of the first 15 minutes to predict the traffic data at the next moment. On the premise that the accuracy on the test set is 98.12%, the model’s predicted value can be considered to be normal. By comparing the actual value with the predicted value, it is determined whether there is an abnormality. On the premise of not reducing the recognition accuracy rate, because the predicted value is calculated in advance, this method greatly improves the detection efficiency.

    Reference
    Related
    Cited by
Get Citation

田伟宏,李喜旺,司志坚.基于长短期记忆网络的工控网络异常流量检测.计算机系统应用,2020,29(9):266-271

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 20,2020
  • Revised:March 17,2020
  • Adopted:
  • Online: September 07,2020
  • Published: September 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063