Named Entity Recognition in Electric Power Dispatching Field Based on GRU
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Name entity recognition is an important part in the power knowledge map construction in power dispatching field. Currently, machine learning and deep learning models are used to name entity recognition in the general field or other professional fields. In order to solve the named entity recognition in the power dispatching field, the Transformer-BiGRU-CRF model is researched. The character vector of the corpus is obtained through the Transformer model, and the named entity recognition is performed through BiGRU-CRF. There are two training methods in the training process, the first method is only to train the parameters of the BiGRU-CRF part; the second method is to train the whole model parameters including the Transformer part. Finally, it is found that the first approach reaches the stationary state in less time, but the accuracy rate is about 5% higher for the second approach.

    Reference
    [1] 郭小龙, 马丽亚, 郭建峰, 等. 电力调度的运行保障问题与措施分析. 集成电路应用, 2020, 37(1): 56–57
    [2] 吴永琴. 电力调度监控一体化系统的告警信息优化研究. 通信电源技术, 2019, 36(12): 17–19
    [3] 付瑞吉. 开放域命名实体识别及其层次化类别获取[博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2014.
    [4] Kaur D, Gupta V. A survey of named entity recognition in English and other Indian languages. IJCSI International Journal of Computer Science Issues, 2010, 7(6): 239–245
    [5] 王宁, 葛瑞芳, 苑春法, 等. 中文金融新闻中公司名的识别. 中文信息学报, 2002, 16(2): 1–6. [doi: 10.3969/j.issn.1003-0077.2002.02.001
    [6] 张晓艳, 王挺, 陈火旺. 命名实体识别研究. 计算机科学, 2005, 32(4): 44–48. [doi: 10.3969/j.issn.1002-137X.2005.04.014
    [7] Zhou GD, Su J. Named entity recognition using an HMM-based chunk tagger. Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, PA, USA. 2002.473–480.
    [8] 李贯峰, 张鹏. 一个基于农业本体的Web知识抽取模型. 江苏农业科学, 2018, 46(4): 201–205
    [9] 刘鹏博, 车海燕, 陈伟. 知识抽取技术综述. 计算机应用研究, 2010, 27(9): 3222–3226. [doi: 10.3969/j.issn.1001-3695.2010.09.005
    [10] 车海燕, 孙吉贵, 荆涛, 等. 一个基于本体主题的中文知识获取方法. 计算机科学与探索, 2007, 1(2): 206–215. [doi: 10.3778/j.issn.1673-9418.2007.02.009
    [11] 车海燕, 冯铁, 张家晨, 等. 面向中文自然语言文档的自动知识抽取方法. 计算机研究与发展, 2013, 50(4): 834–842. [doi: 10.7544/issn1000-1239.2013.20111324
    [12] 滕青青, 吉久明, 郑荣廷, 等. 基于文献的中文命名实体识别算法适用性分析研究. 情报杂志, 2010, 29(9): 157–161, 169. [doi: 10.3969/j.issn.1002-1965.2010.09.037
    [13] 房辉, 汤文兵, 桂海霞, 等. 基于众包标注的中文微博命名实体识别. 计算机应用与软件, 2019, 36(3): 255–259, 270. [doi: 10.3969/j.issn.1000-386x.2019.03.045
    [14] 陈佳沣, 滕冲. 基于强化学习的实体关系联合抽取模型. 计算机应用, 2019, 39(7): 1918–1924
    [15] 徐飞, 叶文豪, 宋英华. 基于BiLSTM-CRF模型的食品安全事件词性自动标注研究. 情报学报, 2018, 37(12): 1204–1211. [doi: 10.3772/j.issn.1000-0135.2018.12.004
    [16] 张应成, 杨洋, 蒋瑞, 等. 基于BiLSTM-CRF的商情实体识别模型. 计算机工程, 2019, 45(5): 308–314
    [17] 武惠, 吕立, 于碧辉. 基于迁移学习和BiLSTM-CRF的中文命名实体识别. 小型微型计算机系统, 2019, 40(6): 1142–1147
    [18] Luo L, Yang ZH, Yang P, et al. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition. Bioinformatics, 2018, 34(8): 1381–1388. [doi: 10.1093/bioinformatics/btx761
    [19] Zhang YJ, Chen ZZ. Recurrent correlation neural network loops. Proceedings of IJCNN International Joint Conference on Neural Networks Volume Ⅱ of Ⅲ. 1992. 126–131.
    [20] Cho K, Van Merrienboer B, Gülçehre Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of EMNLP 2014. Doha, Qatar. 2014. 1724–1734.
    [21] 王洁, 张瑞东, 吴晨生. 基于GRU的命名实体识别方法. 计算机系统应用, 2018, 27(9): 18–24. [doi: 10.15888/j.cnki.csa.006552
    [22] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Advances in Neural Information Processing Systems. Long Beach, NY, USA. 2017. 5998–6008.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

吴超,王汉军.基于GRU的电力调度领域命名实体识别方法.计算机系统应用,2020,29(8):185-191

Copy
Share
Article Metrics
  • Abstract:1154
  • PDF: 2264
  • HTML: 1757
  • Cited by: 0
History
  • Received:February 05,2020
  • Revised:March 03,2020
  • Online: July 31,2020
  • Published: August 15,2020
Article QR Code
You are the first990411Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063