Local Search Adaptive Genetic Algorithm for Stacker Path Optimization
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [10]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    In order to improve the operation efficiency of the three-dimensional warehouse, aiming at stacker path scheduling problem, a stacking machine scheduling optimization model is established based on the time, energy consumption, and operation efficiency, and an Improved Multi-Objective Genetic Algorithm (IMOGA) is proposed. In IMOGA, genetic operator is improved based on NSGA-Ⅱ, crossover and mutation operations are designed for this model, adaptive genetic operator is introduced, and a local random search strategy based on the simulated annealing is added. The IMOGA is validated through the stacker scheduling situation in a spandex factory warehouse. The results show that convergence speed of IMOGA is faster, the quality of the solution set is higher, and it has higher applicability in stacker scheduling.

    Reference
    [1] 任为. 立体仓库货位优化与仿真研究[硕士学位论文]. 徐州: 中国矿业大学, 2015.
    [2] 韩红艳. 基于Pareto支配的高维多目标进化算法研究[硕士学位论文]. 大连: 大连理工大学, 2016.
    [3] 关榆君, 和淼. 基于猫群算法的立体车库调度优化. 华北理工大学学报:自然科学版, 2018, 40(4): 94–99
    [4] Deb K, Agrawal S, Pratap A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Proceedings of the 6th International Conference on Parallel Problem Solving from Nature. France. 2000. 849–858.
    [5] 路艳雪. NSGA-Ⅱ多目标优化算法的改进及应用研究[硕士学位论文]. 太原: 太原理工大学, 2017.
    [6] 魏冰. NSGA-Ⅱ算法的改进及在机组组合优化中的应用[硕士学位论文]. 北京: 华北电力大学, 2019.
    [7] 曲志坚, 张先伟, 曹雁锋, 等. 基于自适应机制的遗传算法研究. 计算机应用研究, 2015, 32(11): 3222–3225, 3229. [doi: 10.3969/j.issn.1001-3695.2015.11.004
    [8] 缪朝炜, 苏瑞泽, 张杰. 越库配送车辆调度问题的自适应遗传算法研究. 管理工程学报, 2016, 30(4): 166–172
    [9] 何庆, 吴意乐, 徐同伟. 改进遗传模拟退火算法在TSP优化中的应用. 控制与决策, 2018, 33(2): 219–225
    [10] Knowles J, Corne D. On metrics for comparing nondominated sets. Proceedings of 2002 Congress on Evolutionary Computation. Honolulu, HI, USA. 2002. 711–716.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

史勤政,王嵩,李冬梅,高岑,田月.面向堆垛机路径优化的局部搜索自适应遗传算法.计算机系统应用,2020,29(8):230-235

Copy
Share
Article Metrics
  • Abstract:1159
  • PDF: 2184
  • HTML: 1294
  • Cited by: 0
History
  • Received:January 12,2020
  • Revised:February 08,2020
  • Online: July 31,2020
  • Published: August 15,2020
Article QR Code
You are the first992285Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063