Prediction of Credit Score Based on Transfer Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Internet financial institutions have many credit businesses, and some of the newly launched businesses cannot establish an effective credit scoring model due to the lack of customer data. This work studies the application of transfer learning ideas to this problem and uses existing customer data from other businesses to help new businesses build effective credit scoring models. This study proposes a deep learning method based on the combination of Triplet-Loss and domain adaptation to re-encode existing business data, and transfers the knowledge obtained after re-encoding to the model of the new business, and finally uses XGBoost as the classifier. In view of the above problems, the model proposed in this study has improved the effect compared to traditional machine learning methods, and solved the problem to a certain extent.

    Reference
    Related
    Cited by
Get Citation

魏千程,吴开超,刘莹.基于迁移学习的信用评分预测.计算机系统应用,2020,29(11):134-138

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 09,2020
  • Revised:March 03,2020
  • Adopted:
  • Online: October 30,2020
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063