Classification Algorithm of Garbage Images Based on Convolutional Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Garbage classification, as one of the important links of resource recycling, can effectively improve the efficiency of resource recycling and further reduce the harm caused by environmental pollution. With the development of modern industry, traditional image classification algorithm cannot meet the requirements of garbage sorting equipment. This study proposes a garbage classification model based on convolutional neural networks (Garbage Classification Network, GCNet). By constructing the attention mechanism, the model completes extracting the local and global features and can obtain perfect and effective feature information. At the same time, the feature fusion mechanism is used to fuse features at different levels and sizes, which can effectively use features and prevent gradient from vanishing. The experimental results prove that GCNet has achieved excellent results on garbage classification datasets and can effectively improve the accuracy of garbage classification.

    Reference
    Related
    Cited by
Get Citation

董子源,韩卫光.基于卷积神经网络的垃圾图像分类算法.计算机系统应用,2020,29(8):199-204

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 08,2020
  • Revised:March 03,2020
  • Adopted:
  • Online: July 31,2020
  • Published: August 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063