Prediction and Correction of Power Loss Data Based on CNN and LSTM
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Data is the key basis for the stable operation of the power grid dispatching control system, in the process of data collection, the lack of data due to hardware failure and other reasons will affect the integrity of the system data, which will have a corresponding impact on the intelligence and efficiency of power grid dispatching. Therefore, the accurate prediction of missing data is of great significance for the construction of smart grid dispatching system. In order to solve the problem of missing data prediction of electric energy collection system in the field of power grid, this study improves and optimizes the existing joint prediction method based on CNN and LSTM, adds a modified model on the basis of the joint prediction model, and uses CNN convolution neural network and the unique opposite side data scene modeling in the electric power data for different missing data segments. The experimental results show that this method reduces the average absolute error value to 0.142, which improves the accuracy of the existing prediction model and accuracy guarantee for the intelligence and efficiency of power grid dispatching system.

    Reference
    Related
    Cited by
Get Citation

郭蕴颖,丁云峰.基于CNN和LSTM联合预测并修正的电量缺失数据预测.计算机系统应用,2020,29(8):192-198

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 08,2020
  • Revised:March 03,2020
  • Online: July 31,2020
  • Published: August 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063