Single-View Gait-Based Identity and Attributes Recognition System under Video Surveillance
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Gait-based feature recognition is an emerging biometric authentication technology, aiming at analyzing human characteristics such as identity through the walking posture of people. Compared with other biological recognition technologies, gait-based methods have the advantages of being difficult to hide, contactless, and remotely usable. This study designs a single-view gait-based human identity and attributes recognition system under video surveillance. The system uses image processing methods to detect a human gait in real-time from a complex surveillance video. After analyzing with the algorithm trained by deep learning, it can obtain the information of human's identity, gender, and age. Experiments show that the accuracy rate of the system is 98.1%, the accuracy of gender prediction is 97.1%, and the mean absolute error of the age prediction is 6.21, which are better than the traditional benchmark. The system is costless, supporting real-time detection, which can fully meet the needs of small and medium-scale gait research and analysis.

    Reference
    Related
    Cited by
Get Citation

廖嘉城,梁艳,王冰冰,潘家辉.视频监控场景下基于单视角步态的人体身份及属性识别系统.计算机系统应用,2020,29(8):113-120

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 28,2020
  • Revised:February 27,2020
  • Adopted:
  • Online: July 31,2020
  • Published: August 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063