Vehicle Detection and Classification Based on Highway Monitoring Video
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Having studied the existing detection and classification algorithms, we design a scheme of fusion of improved Gaussian Mixture Model (GMM) and classification network (GoogLeNet) for vehicle detection and classification. In view of the inaccurate initialization and complex computation of GMM, we improve the algorithm of initialization models to increase the initialization efficiency. The five-frame difference method is used to execute the preliminary vehicle extraction. In the extracted vehicle area, GMM is used to get vehicle images, the five-frame difference method is combined with GMM to reduce the area of modeling and to increase the speed of vehicle detection and improve the real-time performance of the system. At last, we use GoogLeNet to execute the vehicle classification. The results show that the proposed methods have greatly improved the detection speed and recognition accuracy, and satisfy the real-time requirement of vehicle detection and recognition for surveillance video in real scenario.

    Reference
    Related
    Cited by
Get Citation

曹富奎,白天,许晓珑.基于公路监控视频的车辆检测和分类.计算机系统应用,2020,29(10):267-273

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 15,2020
  • Revised:February 13,2020
  • Adopted:
  • Online: September 30,2020
  • Published: October 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063