Classification of E-Commerce Customer Value Based on Grey Correlation Degree and K-Means++
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The combine model of the RFM model and K-means is used to classify customer value and AHP method is mostly used to determine the weight of indicators, without considering the relationship between the indicators of RFM model. In this study, firstly, we select the average time interval, the customer purchase frequency in a period of time, average transaction money of each order, and customer active time to structure RFMT model in order to measure the customer value. Then, determine the index weight by using grey correlation degree. Finally, aiming at the shortcomings of K-means, K-means ++ and elbow law are used to carry out cluster analysis of RFMT model. This model can make a more detailed division of customer base. It can help e-commerce enterprises to identify the customers that need to be focused on. Meanwhile, the enterprise customers can be divided into customer groups with high value to low value, and put forward specific marketing suggestions for different customer groups.

    Reference
    Related
    Cited by
Get Citation

冀慧杰,倪枫,刘姜,赵燚.基于灰色关联度和K-Means++的电子商务客户价值分类.计算机系统应用,2020,29(9):249-254

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 07,2020
  • Revised:February 13,2020
  • Adopted:
  • Online: September 07,2020
  • Published: September 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063