Illegal Operation Detection in Electric Maintenance Based on Improved Mask RCNN
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The norm of opereation in electric power maintenance is related to the personal safety of the staff, and is very im-portant to the development of electric power industry. In order to detect the illegal operation behavior of power maintenance workers from the perspective of computer vision, a multi-tasking and multi-branch illegal behavior detection algorithm was designed based on the Mask RCNN algorithm. It integrates target detection, key point detection and instance segmentation tasks, and performs parallel target detection. Detect and obtain the frame coordinates, keypoints, and mask information of the target. The experimental result demonstrates that this algorithm has significantly improved the precision in instance segmentation and key point detection, has higher accuracy and robustness compared with Mask RCNN. And it meets the accuracy requirements of actual deployment in power maintenance violation detection.

    Reference
    Related
    Cited by
Get Citation

沈茂东,周伟,宋晓东,裴健,邓昊,马超,房凯.基于改进Mask RCNN的电力检修违规操作检测.计算机系统应用,2020,29(8):158-164

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 08,2020
  • Revised:February 08,2020
  • Adopted:
  • Online: July 31,2020
  • Published: August 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063