Fatigue Driving Detection Algorithm at Night Based on Low-Light Enhancement
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Driver’s fatigue will affect the normal driving of the vehicle, and in serious cases will threaten the life safety of driver and passengers. Therefore, detecting whether the driver is fatigue can effectively protect people’s travel safety. In real scenario, generally, when the night light intensity is weak, the driver has a lot of time of fatigue driving, but the existing related detection algorithms cannot deal with the lighting problem, resulting in a low accuracy rate at night fatigue driving detection. Aiming at such problem, this study proposed a night-light fatigue driving detection algorithm based on low-light enhancement. Firstly, the LIME algorithm was used to perform low-light enhancement processing on the face image to improve the exposure of the image. Secondly, the face keypoint detection network was used to obtain the eye area of the image. Thirdly, the convolutional neural network was used to classify the eye area with open and closed eyes. Finally, the ratio of the number of eyes opened and closed per unit time is counted to determine whether the driver is in a fatigue state. The experimental results show that in the night environment, the detection algorithm proposed in this study improves the detection success rate by 15.38% compared with the existing algorithms, and achieves better results.

    Reference
    Related
    Cited by
Get Citation

李晓星,朱明.基于低光增强的夜间疲劳驾驶检测算法.计算机系统应用,2020,29(10):173-178

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 08,2020
  • Revised:February 08,2020
  • Adopted:
  • Online: September 30,2020
  • Published: October 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063