Chinese Entity Recognition Based on BERT-BiLSTM-CRF Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Named Entity Recognition is a key technology in natural language processing, and the methods based on deep learning have been widely used in Chinese entity recognition. Most deep learning models focus on the feature extraction of words and characters, but ignore the semantic information of word context, therefore, they cannot represent polysemy, and the performance of entity recognition needs to be further improved. In order to solve this problem, this study proposes a method based on the BERT-BiLSTM-CRF model. First, word vectors based on context information are generated by the pretreatment of BERT model, and then the trained word vector is input into BiLSTM-CRF model for further training. The experimental result shows that the proposed model achieves sound results and reaches F1-score of 94.65% and 95.67% respectively in the MSRA corpus and People’s Daily.

    Reference
    Related
    Cited by
Get Citation

谢腾,杨俊安,刘辉.基于BERT-BiLSTM-CRF模型的中文实体识别.计算机系统应用,2020,29(7):48-55

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 22,2019
  • Revised:January 19,2020
  • Adopted:
  • Online: July 04,2020
  • Published: July 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063