Application of Text Detection and Recognition in Fine-Grained Image Classification
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Fine-grained image classification is an important branch in the field of deep learning image classification. Since many different classified images are very similar in their features, and there is no particularly distinctive feature can be used to distinguish among them, it makes the classification task of fine-grained image more difficult than that of the general image. Therefore, a traditional image classification method needs to be optimized. Usually, visual and pixel-level features extraction is used in the training of the general image classification. However, direct application of this method to the fine-grained classification is not very suitable, and the effect still needs to be improved, while non-pixel-level features can be used to distinguish. Hence, we propose to combine text and visual information in the image classification, make full use of the features on the images, combine the text detection and recognition algorithms with general image classification methods, and apply it to the fine-grained image classification. In Con-text dataset, the experimental result shows that the accuracy obtained by the proposed algorithm has been significantly improved.

    Reference
    Related
    Cited by
Get Citation

姜倩,刘曼.文本检测与识别在细粒度图片分类中的应用.计算机系统应用,2020,29(10):248-254

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 17,2019
  • Revised:January 14,2020
  • Adopted:
  • Online: September 30,2020
  • Published: October 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063