Accident Prediction of Power Distribution Network Based on Graph Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Power distribution network accident in actual application scenarios account for more than 80% of total grid accident, and the prediction of power distribution network accident has always been a difficult issue. This study, under the call of “Ubiquitous IoT” proposed by the State Grid, analyzes the research results of scholars on this issue, and proposes an accident prediction method for power distribution network based on graph neural network with the idea of graph neural network. Referring to the commonly used graph neural network design framework, the node information aggregation function, prediction function, and loss function are designed in detail, and reasonable depth parameters are selected according to the algorithm flow test. The algorithm fully considers the mutual influence between connected nodes, and uses the real grid operation data to compare the two other algorithms commonly used in this field. Experiments show that the proposed algorithm improves the accuracy by 3.0% and is more robust.

    Reference
    Related
    Cited by
Get Citation

杨华,李喜旺,司志坚,张晓.基于图神经网络的配电网故障预测.计算机系统应用,2020,29(9):131-135

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 06,2020
  • Revised:January 22,2020
  • Adopted:
  • Online: September 07,2020
  • Published: September 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063