Road Extraction of GF-2 Satellite Image Based on Convolutional Neural Network
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    More details may be lost and considerations of the surrounding environment of the road are inadequate when extract the road from GF-2 remote sensing satellite which based on the deep neural network. Aiming at these problems and based on the existing researches results, this study proposes an improvement proposal which using the full convolutional neural network to extract road from remote sensing images. The scheme innovatively researches the algorithm principle of the full convolutional neural network and outputs the pre-graded GF-2 images in a certain size. Then, the output images and the corresponding labels are input into the improved full convolutional neural network. At last, a road extraction image with higher recognition accuracy is obtained by combining residual unit and increasing the number of network layers. Experiments show that the effect on road extraction of GF-2 satellite images is improved in the same sample, the integrity and accuracy of the road are also improved.

    Reference
    [1] 曹云刚, 王志盼, 杨磊. 高分辨率遥感影像道路提取方法研究进展. 遥感技术与应用, 2017, 32(1): 20-26
    [2] 王峰萍, 王卫星, 薛柏玉, 等. GVF Snake与显著特征相结合的高分辨率遥感图像道路提取. 测绘学报, 2017, 46(12): 1978-1985. [doi: 10.11947/j.AGCS.2017.20170393
    [3] 连仁包, 王卫星, 李娟. 自适应圆形模板及显著图的高分辨遥感图像道路提取. 测绘学报, 2018, 47(7): 950-958. [doi: 10.11947/j.AGCS.2018.20170596
    [4] Zhao JQ, Yang J, Li PX, et al. Semi-automatic road extraction from SAR images using EKF and PF. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-7/W4: 227-230. [doi: 10.5194/isprsarchives-XL-7-W4-227-2015
    [5] Zang Y, Wang C, Cao LJ, et al. Road network extraction via aperiodic directional structure measurement. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3322-3335. [doi: 10.1109/TGRS.2016.2514602
    [6] Chinnathevar S, Dharmar S. FPGA implementation of road network extraction using morphological operator. Image Analysis & Stereology, 2016, 35(2): 93-103
    [7] 李杰, 冯魁祥, 朱玲玲, 等. 基于阈值标记的分水岭算法遥感图像道路提取. 长春大学学报, 2019, 29(6): 10-14
    [8] 符喜优, 张风丽, 王国军, 等. 基于模糊连接度的高分辨率SAR图像道路自动提取. 计算机应用, 2015, 35(2): 523-527. [doi: 10.11772/j.issn.1001-9081.2015.02.0523
    [9] Kusumandari DE, Munandar A, Redhyka GG. The comparison of GVF snake active contour method and ellipse fit in optic disc detection for glaucoma diagnosis. Proceedings of 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT). Bandung, Indonesia. 2015. 123-126.
    [10] Perciano T, Tupin F, Hirata Jr R, et al. A two-level Markov random field for road network extraction and its application with optical, SAR, and multitemporal data. International Journal of Remote Sensing, 2016, 37(16): 3584-3610. [doi: 10.1080/01431161.2016.1201227
    [11] 袁鹏飞, 黄荣刚, 胡平波, 等. 基于多光谱LiDAR数据的道路中心线提取. 地球信息科学学报, 2018, 20(4): 452-461. [doi: 10.12082/dqxxkx.2018.170634
    [12] 查中亮. 基于多源遥感数据的道路、居民点提取及布局优化研究[硕士学位论文]. 成都: 四川师范大学, 2018.
    [13] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 3431-3440.
    [14] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany. 2015. 234-241.
    [15] Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [doi: 10.1109/TPAMI.2016.2644615
    [16] Chen LC, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [doi: 10.1109/TPAMI.2017.2699184
    [17] Chen LC, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany. 2018. 833-851.
    [18] Mnih V, Hinton GE. Learning to detect roads in high-resolution aerial images. Proceedings of the 11th European Conference on Computer Vision. Heraklion. Crete, Greece. 2010. 210-223.
    [19] Saito S, Yamashita T, Aoki Y. Multiple object extraction from aerial imagery with convolutional neural networks. Journal of Imaging Science and Technology, 2016, 60(1): 010402
    [20] Cheng GL, Wang Y, Xu SB, et al. Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3322-3337. [doi: 10.1109/TGRS.2017.2669341
    [21] Zhang ZX, Liu QJ, Wang YH. Road extraction by deep residual U-net. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753. [doi: 10.1109/LGRS.2018.2802944
    [22] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

孙卓,李冬伟,赵泽宾,张倩倩.卷积神经网络下的高分二号卫星影像道路提取.计算机系统应用,2020,29(11):128-133

Copy
Share
Article Metrics
  • Abstract:1040
  • PDF: 2804
  • HTML: 1645
  • Cited by: 0
History
  • Received:December 17,2019
  • Revised:January 04,2020
  • Online: October 30,2020
Article QR Code
You are the first990992Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063