Road Extraction of GF-2 Satellite Image Based on Convolutional Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    More details may be lost and considerations of the surrounding environment of the road are inadequate when extract the road from GF-2 remote sensing satellite which based on the deep neural network. Aiming at these problems and based on the existing researches results, this study proposes an improvement proposal which using the full convolutional neural network to extract road from remote sensing images. The scheme innovatively researches the algorithm principle of the full convolutional neural network and outputs the pre-graded GF-2 images in a certain size. Then, the output images and the corresponding labels are input into the improved full convolutional neural network. At last, a road extraction image with higher recognition accuracy is obtained by combining residual unit and increasing the number of network layers. Experiments show that the effect on road extraction of GF-2 satellite images is improved in the same sample, the integrity and accuracy of the road are also improved.

    Reference
    Related
    Cited by
Get Citation

孙卓,李冬伟,赵泽宾,张倩倩.卷积神经网络下的高分二号卫星影像道路提取.计算机系统应用,2020,29(11):128-133

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 17,2019
  • Revised:January 04,2020
  • Adopted:
  • Online: October 30,2020
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063