Human Behavior Detection Based on Improved YOLOv3
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study proposes a neural network named Hierarchical Bilinear-YOLOv3 for human behavior detection due to a large disparity in the same behavior and high resemblance between different behaviors in human behavior detection, as well as problems such as visual angle, occlusion, and incapability of continuous real-time monitoring. YOLOv3 is first designed for prediction on three scales, and certain layers in its feature pyramid networks are used as inputs for Hierarchical Bilinear to capture local feature relationships between layers in the feature maps and predict the results on three scales. The integrated results of both YOLOv3 and Hierarchical Bilinear show that the improved network only adds a few parameters compared to the original one. It improves the detection accuracy of the original algorithm without lowering the detection efficiency and thus is superior to the current behavior detection algorithms.

    Reference
    Related
    Cited by
Get Citation

李啸天,黄进,李剑波,杨旭,秦泽宇,付国栋.基于改进YOLOv3的人体行为检测.计算机系统应用,2021,30(6):197-202

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 16,2019
  • Revised:January 14,2020
  • Adopted:
  • Online: June 05,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063