Multi-Object Personnel Tracking Method for Electric Power Maintenance Based on Improved SSD
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With the rapid development of computer artificial intelligence, the number of cameras is increasing, and the amount of video data is also increasing rapidly. The security monitoring and tracking of humanoid trajectory in video is an important research direction of large-scale intelligent monitoring system. Considering that the difference of illumination and darkness of different cameras in different security control scenarios and the human angle and size of each frame will affect the accuracy of human tracking, Correct Single Shot multibox Detector (CSSD) network with advantage of fastness and associated analysis are proposed for human tracking. Based on the pedestrian multi-object tracking technology, this study proposes a CSSD network for model detection, and uses ordinary Kalman filter to track and predict the position of the target, predicts the position of the detection box, and uses IOU method and Hungarian algorithm to solve the problem of video frame target matching before and after. It has been proved that this method can effectively improve the accuracy of humanoid targets, alleviate the large changes caused by epigenetic mutation or partial occlusion, and adapt to the size, distance, and angle changes of targets to the greatest extent.

    Reference
    [1] 刘鹏举. 基于判别学习的单目标跟踪系统研究与实现[硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2016.
    [2] 王守义, 周海英, 杨阳. 基于卷积特征的核相关自适应目标跟踪. 中国图象图形学报, 2017, 22(9): 1230–1239. [doi: 10.11834/jig.170009
    [3] 朱文青, 刘艳, 卞乐, 等. 基于生成式模型的目标跟踪方法综述. 微处理机, 2017, 38(1): 41–47. [doi: 10.3969/j.issn.1002-2279.2017.01.011
    [4] 陆星家, 郭璘, 陈志荣, 等. 基于外观和运动的车辆检测和追踪算法研究. 计算机工程, 2014, 40(8): 152–157. [doi: 10.3969/j.issn.1000-3428.2014.08.029
    [5] 刘欢, 李春庚, 安居白, 等. 基于核相关滤波的多目标追踪. 激光与光电子学进展, 2019, 56(12): 154–161
    [6] 王保宪. 复杂背景下的视频目标跟踪算法研究[博士学位论文]. 北京: 北京理工大学, 2016.
    [7] 李冰寒, 酒锐波, 刘玉婷. 基于卡尔曼预测的快速目标跟踪算法. 中国新通信, 2019, 21(8): 130. [doi: 10.3969/j.issn.1673-4866.2019.08.104
    [8] 樊庆宇. 稀疏表示在目标追踪中的应用研究[硕士学位论文]. 成都: 电子科技大学, 2017.
    [9] 梅立雪, 汪兆栋, 张浦哲. 一种邻帧匹配与卡尔曼滤波相结合的多目标跟踪算法. 科学技术与工程, 2019, 19(15): 204–210. [doi: 10.3969/j.issn.1671-1815.2019.15.033
    [10] 曹凯悦. 基于多Agent的多摄像头目标轨迹追踪[硕士学位论文]. 北京: 北京交通大学, 2018.
    [11] 陈小娟, 佘二永. 基于粒子滤波和Mean-shift的自适应目标跟踪方法. 科学技术与工程, 2013, 13(33): 10013–10016, 10031. [doi: 10.3969/j.issn.1671-1815.2013.33.041
    [12] 林庆, 徐小丁, 廖定安, 等. 稀疏表示因子模糊粒子滤波的目标追踪. 小型微型计算机系统, 2014, 35(1): 181–184. [doi: 10.3969/j.issn.1000-1220.2014.01.037
    [13] 岳昊恩, 袁亮, 吕凯. 结合帧差法与Mean Shift的抗遮挡跟踪算法. 现代电子技术, 2019, 42(12): 180–182, 186
    [14] Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric. Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China. 2017.3645–3649.
    [15] Fan ZY, Weng SQ, Jiang J, et al. Particle filter object tracking algorithm based on sparse representation and nonlinear resampling. Journal of Beijing Institute of Technology, 2018, 27(1): 51–57
    [16] Tian MC, Bo YM, Chen ZM, et al. Multi-target tracking method based on improved firefly algorithm optimized particle filter. Neurocomputing, 2019, 359: 438–448. [doi: 10.1016/j.neucom.2019.06.003
    [17] Jakob EM, Long SM, Harland DP, et al. Lateral eyes direct principal eyes as jumping spiders track objects. Current Biology, 2018, 28(18): R1092–R1093. [doi: 10.1016/j.cub.2018.07.065
    [18] 汤文. 复杂背景下红外运动小目标的检测与跟踪技术研究[硕士学位论文]. 长沙: 国防科学技术大学, 2016.
    [19] 娄涵. 融合时空信息的连续相关滤波用于目标跟踪[硕士学位论文]. 北京: 北京邮电大学, 2018.
    [20] Zhou HY, Yang Y, Wang SY. Multiple object tracking algorithm based on kernel correlation filter. Laser & Optoelectronics Progress, 2018, 55(9): 091502
    [21] 贺潇. 基于深度学习检测与核相关滤波器的追踪算法[硕士学位论文]. 北京: 北京邮电大学, 2018.
    [22] Xiang Y, Alahi A, Savarese S. Learning to track: online multi-object tracking by decision making. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile. 2015.4705–4713.
    [23] Chen L, Ai HZ, Shang C, et al. Online multi-object tracking with convolutional neural networks. Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China. 2017.645–649.
    [24] 陈智, 柳培忠, 骆炎民, 等. 自适应特征融合的多尺度相关滤波目标跟踪算法. 计算机辅助设计与图形学学报, 2018, 30(11): 2063–2073
    [25] Bochinski E, Eiselein V, Sikora T. High-speed tracking-by-detection without using image information. Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance. Lecce, Italy. 2017.1–6.
    [26] Bewley A, Ge ZY, Ott L, et al. Simple online and realtime tracking. Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix, AZ, USA. 2016.3464–3468.
    [27] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot MultiBox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherland. 2016.21–37.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

沈茂东,高宏,付新阳,周伟,张俊岭,公凡奎,冯志珍.基于改进SSD的电力检修多目标人员追踪方法.计算机系统应用,2020,29(8):152-157

Copy
Share
Article Metrics
  • Abstract:1505
  • PDF: 2172
  • HTML: 1384
  • Cited by: 0
History
  • Received:December 13,2019
  • Revised:January 07,2020
  • Online: July 31,2020
  • Published: August 15,2020
Article QR Code
You are the first992162Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063