Diagnosis of Marine Aquaculture Diseases Based on VGG-16 Convolutional Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Marine aquaculture is affected by a variety of diseases, and the differences in lesion characteristics are very suitable for image recognition. Based on the above requirements, this study designs a marine breeding disease diagnosis model based on VGG-16 convolutional neural network, and uses a stochastic gradient descent algorithm and overfitting prevention technology to improve the model. The experimental results show that this model is better than other traditional network models, and has high recognition accuracy, generalization ability, and robustness. It can accurately and quickly diagnose diseases with certain expansion and promotion value.

    Reference
    Related
    Cited by
Get Citation

李海涛,王腾,王印庚.基于VGG-16卷积神经网络的海水养殖病害诊断.计算机系统应用,2020,29(7):222-227

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 22,2019
  • Revised:December 16,2019
  • Adopted:
  • Online: July 04,2020
  • Published: July 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063