Application of Improved RF Algorithm in Quality Assessment of Personnel Training
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The quality of college graduates is directly related to the social reputation and development of colleges and universities. In order to accurately evaluate the quality of college graduates, based on the historical data of computer graduates in a university, this study uses an improved random forest algorithm to build a talent training quality assessment model. Before training classifiers, RF ranking method is used to measure the importance of features and select 75% of the features for dimension reduction, so as to improve the unbalanced phenomenon of training samples; through the training of base classifiers, the performance of each classifier is tested, and a single classifier is weighted according to the strength of performance, so as to reduce the impact of poor performance classifiers on the results. The practical results show that the algorithm improves the accuracy and precision of the quality assessment of personnel training, and can play a guiding role in personnel training in colleges and universities.

    Reference
    Related
    Cited by
Get Citation

毕瑶家,刘国柱,王华东,孙驰,付兆殊.改进随机森林算法在人才培养质量评价中的应用.计算机系统应用,2020,29(7):212-216

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 24,2019
  • Revised:November 20,2019
  • Adopted:
  • Online: July 04,2020
  • Published: July 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063