Application of Improved RF Algorithm in Quality Assessment of Personnel Training
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The quality of college graduates is directly related to the social reputation and development of colleges and universities. In order to accurately evaluate the quality of college graduates, based on the historical data of computer graduates in a university, this study uses an improved random forest algorithm to build a talent training quality assessment model. Before training classifiers, RF ranking method is used to measure the importance of features and select 75% of the features for dimension reduction, so as to improve the unbalanced phenomenon of training samples; through the training of base classifiers, the performance of each classifier is tested, and a single classifier is weighted according to the strength of performance, so as to reduce the impact of poor performance classifiers on the results. The practical results show that the algorithm improves the accuracy and precision of the quality assessment of personnel training, and can play a guiding role in personnel training in colleges and universities.

    Reference
    [1] 李莉, 朱明珍, 洪云. 大学毕业生就业质量评价指标体系研究——以云南省高校为例. 昆明理工大学学报(社会科学版), 2017, 17(1): 73-86
    [2] 宁东卫, 范春梅, 王莘. 大学生就业质量评价指标构建的探析. 云南农业大学学报(社会科学), 2016, 10(4): 89-93
    [3] 宋俊秀, 谢德刚. 基于模糊综合评价法的大学生就业质量分析——以安徽省高校2014-2017年样本为例. 高校辅导员学刊, 2018, 10(3): 51-56
    [4] 韩天才. 基于层次分析法的大学生就业质量评价及系统的设计与实现[硕士学位论文]. 合肥: 安徽农业大学, 2018.
    [5] James G, Witten D, Hastie T, et al. An introduction to statistical learning with applications in R. New York: Springer, 2013. 3-26.
    [6] 刘永垚, 第宝锋, 詹宇, 等. 基于随机森林模型的泥石流易发性评价——以汶川地震重灾区为例. 山地学报, 2018, 36(5): 765-773
    [7] Brida JG, Lanzilotta B, Moreno L, et al. A non-linear approximation to the distribution of total expenditure distribution of cruise tourists in Uruguay. Tourism Management, 2018, 69: 62-68. [doi: 10.1016/j.tourman.2018.05.006
    [8] Feng Y, Cui NB, Gong DZ, et al. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural Water Management, 2017, 193: 163-173. [doi: 10.1016/j.agwat.2017.08.003
    [9] 周博翔, 李平, 李莲. 改进随机森林及其在人体姿态识别中的应用. 计算机工程与应用, 2015, 51(16): 86-92, 141. [doi: 10.3778/j.issn.1002-8331.1309-0162
    [10] 李欢, 熊梦莹, 聂斌, 等. 融合因子分析的随机森林研究. 计算机工程与应用, 2019, 55(23): 125-130. [doi: 10.3778/j.issn.1002-8331.1808-0266
    [11] 邹永潘, 王儒敬, 李伟. 随机森林算法在小麦育种辅助评价中的应用. 计算机系统应用, 2017, 26(12): 181-185. [doi: 10.15888/j.cnki.csa.006162
    [12] 刘勇, 兴艳云. 基于改进随机森林算法的文本分类研究与应用. 计算机系统应用, 2019, 28(5): 220-225
    [13] 王平, 单文英. 改进的随机森林算法在乳腺肿瘤诊断中的应用. 计算机应用与软件, 2016, 33(4): 252-257, 264. [doi: 10.3969/j.issn.1000-386x.2016.04.059
    [14] 李慧, 李正, 佘堃. 一种基于综合不放回抽样的随机森林算法改进. 计算机工程与科学, 2015, 37(7): 1233-1238. [doi: 10.3969/j.issn.1007-130X.2015.07.002
    [15] 谢晓龙, 叶笑冬, 董亚明. 梯度提升随机森林模型及其在日前出清电价预测中的应用. 计算机应用与软件, 2018, 35(9): 327-333. [doi: 10.3969/j.issn.1000-386x.2018.09.058
    [16] 魏正韬, 杨有龙, 白婧. 基于非平衡数据的随机森林分类算法改进. 重庆大学学报, 2018, 41(4): 54-62
    [17] 孙悦, 袁健. 基于Spark的改进随机森林算法. 电子科技, 2019, 32(4): 60-63, 67
    [18] 王凯, 王菊香, 邢志娜, 等. 基于改进特征选择RF算法的红外光谱建模方法. 计算机应用研究, 2018, 35(10): 3000-3002. [doi: 10.3969/j.issn.1001-3695.2018.10.027
    Related
    Cited by
Get Citation

毕瑶家,刘国柱,王华东,孙驰,付兆殊.改进随机森林算法在人才培养质量评价中的应用.计算机系统应用,2020,29(7):212-216

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 24,2019
  • Revised:November 20,2019
  • Online: July 04,2020
  • Published: July 15,2020
Article QR Code
You are the first990384Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063