Device Fault Detection Based on PSO_ RF Bidirectional Feature Selection and LightGBM
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The development of the instrument sharing platform has increased the utilization rate of instruments and equipment in various universities. However, during the use of the equipment, the fault detection of the equipment has not been improved. In view of the above problems, this study collected relevant data of medical imaging equipment, adopted the two-way feature selection method of PSO_RF for feature selection, then built a fault detection model based on LightGBM (Light Gradient Boosting Machine), and applied it to the fault detection of medical imaging equipment. Through the establishment of the standard evaluation system and the comparison of fault diagnosis results by different models, compared with the traditional machine learning algorithm, this model has a better performance in the accuracy rate, recall rate, F1 value and other evaluation indicators of fault detection, which has a positive role in accelerating the discovery of instrument fault points and improving the utilization rate of instruments.

    Reference
    Related
    Cited by
Get Citation

韩金鹏,李冬梅,王嵩.基于PSO_RF双向特征选择和LightGBM设备故障检测.计算机系统应用,2020,29(7):228-232

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 02,2019
  • Revised:December 27,2019
  • Adopted:
  • Online: July 04,2020
  • Published: July 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063