Parameter Automatic Optimization for Feature Selection Fusion Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In view of traditional feature selection methods such as information gain algorithm have preference for selecting features that have more values, Pearson correlation coefficient alone cannot be used to deal with nonlinear correlation, and optimization of algorithm parameters is too tedious, a feature selection fusion approach is proposed based on maximum information coefficient and Pearson correlation coefficient. Moreover, this approach makes use of genetic algorithm to optimize parameters automatically. In the first stage, the feature selection is carried out according to the maximum information coefficient and the correlation between features and tags. In the second stage, Pearson correlation coefficient is used to reduce the redundant acquired features. Furthermore, two hyper-parameters in the first two stages are optimized automatically based on genetic algorithm. The experimental results show that the algorithm can reduce the dimension of feature space and improve the classification performance.

    Reference
    Related
    Cited by
Get Citation

吴俊,柯飂挺,任佳.参数自动优化的特征选择融合算法.计算机系统应用,2020,29(7):145-151

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 19,2019
  • Revised:December 11,2019
  • Adopted:
  • Online: July 04,2020
  • Published: July 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063