Force Access Control System Based on Improved CNN
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The access control management methods for important places such as military weapons warehouses are insufficient in security. In order to solve the defects, we design an access control system based on improved convolutional neural network. This paper first introduces the basic knowledge of convolutional neural networks, then introduces Particle Swarm Optimization (PSO) algorithm to design and optimize initial weights and thresholds of convolutional neural networks. After designing, experiment with the MNIST handwritten digital dataset is carried out. The results demonstrate that the modified convolutional neural network can make the convergence speed faster, and the loss is smaller, so the outcome is obviously better than the traditional convolutional neural network. On this basis, according to the actual working conditions of the troops, PSO is applied in the MTCNN and SIAM-ResNet face detection algorithm, the access control system based on improved convolutional neural network is designed, which makes the access control of important places in the army have higher security and reliability.

    Reference
    Related
    Cited by
Get Citation

何伟鑫,邓建球,方轶,丛林虎,李俊达.基于改进CNN的部队门禁系统.计算机系统应用,2020,29(6):126-131

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 13,2019
  • Revised:December 09,2019
  • Adopted:
  • Online: June 12,2020
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063