Application of Elman Neural Network in Optimizing Air Forecast Model Results
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The air quality is closely related to people’s lives. The prediction results of air quality are the basis for air quality control. Therefore, how to improve the prediction accuracy of air quality is the focus of this study. The Community Multiscale Air Quality modeling system (CMAQ) and the Comprehensive Air quality Model with extensions (CAMx) are two commonly used numerical models of air quality. The prediction principles are based on atmospheric physical and chemical methods to simulate the process of pollutant transmission and conversion, and then air quality is predicted. The quality of the input files of the air quality numerical model affects the accuracy of the air quality prediction. In order to improve the accuracy of air quality prediction, this study proposes a method based on Elman neural network. This method uses Elman neural network to optimize the prediction results of two air quality numerical models of CMAQ and CAMx. First, this study runs the air quality mode CMAQ and CAMx to get the prediction results, and then pre-process the prediction results. The processed prediction data and the measured data are used as the input of the Elman neural network for model training and finally get the neural network model. Through the verification and analysis of the test data set, the experimental results show that the method shows higher accuracy than the single air quality numerical model.

    Reference
    Related
    Cited by
Get Citation

张镝,于海飞,刘闽,杜毅明,金继鑫,曹吉龙,赵思彤. Elman神经网络在优化空气预报模式结果中的应用.计算机系统应用,2020,29(6):265-270

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 22,2019
  • Revised:November 20,2019
  • Adopted:
  • Online: June 12,2020
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063