Text Style Transfer Based on Matrix Transformation
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Text style transfer is always a hot spot in Natural Language Processing (NLP). In recent years, as the development of sequence generation methods, many researchers focus on style transfer on non-parallel corpora. Specifically, this task wants to change the style of the sentence while keeping the original content. To achieve this target, many works have been proposed which based on the generative adversarial network. But due to the instability of adversarial training and the limitation of the independence assumption between the style and semantic information, these methods are hard to learn an effective and efficient transfer model. In this study, motivated by statistic learning methods, a definition of the text style is given. The style of the corpus can be captured by the covariance matrix of its sentences’ semantic vectors. From this perspective, the text style is dependent on all the semantic information. We then propose a learning free transfer method where the only thing we need is a pre-trained auto-encoder to produce the semantic vectors. With a pair of matrix transformations, including whitening transformation and stylizing transformation, performing on these vectors, we achieve text style transfer.

    Reference
    Related
    Cited by
Get Citation

黄若孜,张谧.基于矩阵变换的文本风格迁移方法.计算机系统应用,2020,29(9):136-141

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 27,2019
  • Revised:November 20,2019
  • Adopted:
  • Online: September 07,2020
  • Published: September 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063