Semantic Segmentation of Character Targets in Images Based on FCN
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study proposes an algorithm for semantic segmentation of targets in images based on fully convolutional neural networks and a new method to make and augment dataset. The algorithm primarily segments the targets from images using improved fully convolutional neural networks, OTSU method is applied to binarize images and segment the general areas of targets, finally, the fully connected conditional random field algorithm is used to correct the general areas of targets and get the final results. This algorithm achieves the accuracy of 85.7% and speed of 0.181 second per image on test set, and prepares for further analysis of targets in images.

    Reference
    Related
    Cited by
Get Citation

刘信良,王静秋.基于FCN的图像中文字目标语义分割.计算机系统应用,2020,29(6):175-180

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 28,2019
  • Revised:November 20,2019
  • Adopted:
  • Online: June 12,2020
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063