Bird Nest Detection on Transmission Tower Based on Improved SSD Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As an important part of overhead transmission line, the safety of transmission tower will affect the operation of the whole power system. The construction of bird's nest is one of the important factors affecting the normal operation of transmission line, which needs to be monitored. Nevertheless, the existing monitoring methods not only are inefficient, but also require a lot of manpower and material resources. To cope with this phenomenon, this study puts forward a real-time detection method based on the algorithm of SSD. In addition, lead network VGGNet is replaced by ResNet-101 based on the network structure of SSD, so as to improve their ability of feature extraction. The Focal loss instead of Softmax loss improve SSD sample imbalances in the algorithm. And the data augmentation is used to increase diversity, in order to improve the robustness of the model. Experimental results show that the detection accuracy of the method proposed in this study is improved by 3.17% and 6.35% respectively in terms of accuracy and recall rate compared with the original SSD algorithm.

    Reference
    Related
    Cited by
Get Citation

祁婕,焦良葆.改进SSD的输电铁塔鸟窝检测.计算机系统应用,2020,29(5):202-208

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 14,2019
  • Revised:November 07,2019
  • Adopted:
  • Online: May 07,2020
  • Published: May 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063