SPH Based Collision Detection Between Fluid Particle and Soft-Tissue
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this work, the problem of collision detection of bloody particles and soft tissue organs in virtual surgery system was studied. The problem of collision detection between bloody blood and soft tissue in virtual surgery is different from that of traditional rigid body or software collision detection. The topological structure of bloody model changes greatly. The traditional method of collision detection by updating topology cannot ensure real-time and accuracy. A collision detection algorithm for bloody particles and software based on space partitioning is proposed, which can handle collision detection between software based on Smoothed Particle Hydrodynamics (SPH) simulation and software simulated by any dynamic model. At the same time, the uniform space grid established in the nearest neighboring particle search of SPH algorithm is proposed to be reused. The space grid is used for the space division of collision detection and the localization of fluid particles, thus reducing the time and space resources repeated consumption. Experimental results show that the algorithm can meet the accuracy and real-time requirements of collision detection between bloody particles and software in virtual surgery.

    Reference
    Related
    Cited by
Get Citation

施鹏,陈飞,廖晋民.基于SPH方法的流体粒子与软体碰撞检测.计算机系统应用,2020,29(5):214-219

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 30,2019
  • Revised:October 29,2019
  • Adopted:
  • Online: May 07,2020
  • Published: May 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063