Data-Driven Supplier Efficiency Evaluation on Intelligent Manufacturing Enterprises
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Under the environment of intelligent manufacturing, supplier efficiency evaluation is very important for the development of intelligent manufacturing enterprises. This study constructs the supplier efficiency evaluation index system of intelligent manufacturing enterprises according to the characteristics of suppliers, the construction principles of evaluation index system, and literature summary. The weights of each index are determined by AHP-entropy method, and the supplier is graded by using the enterprise data of subject cooperation and BP neural network. The improvement suggestions for suppliers are put forward and further cooperation and communication between enterprises and suppliers are promoted. The example results show that this method has strong practicability for supplier efficiency evaluation.

    Reference
    [1] 徐雪, 张艺, 余开朝. 基于BP神经网络的智能制造能力评价研究. 软件, 2018, 39(8):162-166
    [2] 张曙. 工业4.0和智能制造. 机械设计与制造工程, 2014, (8):1-5
    [3] Yurdakul M, İç YT. Development of a performance measurement model for manufacturing companies using the AHP and TOPSIS approaches. International Journal of Production Research, 2005, 43(21):4609-4641.[doi:10.1080/00207540500161746
    [4] Eckert-Gallup AC, Sallaberry CJ, Dallman AR, et al. Application of Principal Component Analysis (PCA) and improved joint probability distributions to the Inverse First-Order Reliability Method (I-FORM) for predicting extreme sea states. Ocean Engineering, 2016, 112:307-319.[doi:10.1016/j.oceaneng.2015.12.018
    [5] Chen TW, Lin JY, Chen KS. Selecting a supplier by fuzzy evaluation of capability indices, CPM. The International Journal of Advanced Manufacturing Technology, 2003, 22(7-8):534-540.[doi:10.1007/s00170-002-1487-8
    [6] Cannavacciuolo L, Iandoli L, Ponsiglione C, et al. An analytical framework based on AHP and activity-based costing to assess the value of competencies in production processes. International Journal of Production Research, 2012, 50(17):4877-4888.[doi:10.1080/00207543.2012.657974
    [7] Zhao JJ, He YH, Huang RQ, et al. Weights of slope stability evaluation indexes based on factor analysis method. Journal of Southwest Jiaotong University, 2015, 50(2):325-330
    [8] Loh HS, Zhou QJ, Thai VV, et al. Fuzzy comprehensive evaluation of port-centric supply chain disruption threats. Ocean & Coastal Management, 2017, 148:53-62
    [9] Sun WH, Li D, Liu P. A decision-making method for sponge city design based on grey correlation degree and TOPSIS method. Journal of Interdisciplinary Mathematics, 2018, 21(4):1031-1042.[doi:10.1080/09720502.2018.1456826
    [10] 郭彤颖, 陈露. 基于鸟群算法优化BP神经网络的热舒适度预测. 计算机系统应用, 2018, 27(4):162-166.[doi:10.15888/j.cnki.csa.006303
    [11] (奥)Schuh C, (奥)Strohmer MF, (英)Easton S, 等. 供应商关系管理 机会与价值最大化. (美)李学芸, 吴江, 译. 北京:清华大学出版社. 2016.
    [12] 孟卫东, 龙美彪. 曲线数据压缩算法的研究及应用. 计算机系统应用, 2019, 28(5):150-155.[doi:10.15888/j.cnki.csa.006949
    [13] 宗宸生, 郑焕霞, 王林山. 改进粒子群优化BP神经网络粮食产量预测模型. 计算机系统应用, 2018, 27(12):204-209.[doi:10.15888/j.cnki.csa.006651
    [14] 卢滢宇. 竞争算法优化BP神经网络性能研究. 计算机系统应用, 2019, 28(5):173-177.[doi:10.15888/j.cnki.csa.006903
    [15] 中国电子技术标准化研究院. 智能制造能力成熟度模型白皮书1.0版. 北京:中国电子技术标准化研究院, 2016.
    [16] Dickson GW. An analysis of vendor selection systems and decisions. Journal of Purchasing, 1966, 2(1):5-17.[doi:10.1111/j.1745-493X.1966.tb00818.x
    [17] Bai CG, Sarkis J. Integrating sustainability into supplier selection with grey system and rough set methodologies. International Journal of Production Economics, 2010, 124(1):252-264.[doi:10.1016/j.ijpe.2009.11.023
    [18] Cheng HY. Research on comprehensive evaluation model of supplier management performance. Logistics Sci-Tech, 2012, 35(1):74-78
    [19] Frankowiak M, Grosvenor R, Prickett P. A review of the evolution of microcontroller-based machine and process monitoring. International Journal of Machine Tools and Manufacture, 2005, 45(4-5):573-582.[doi:10.1016/j.ijmachtools.2004.08.018
    [20] Ruiz N, Giret A, Botti V, et al. An intelligent simulation environment for manufacturing systems. Computers & Industrial Engineering, 2014, 76:148-168
    [21] 王蒙燕. 基于ELECTRE-IV的国际贸易目标供应商评价算法. 统计与决策, 2014, (23):52-55
    [22] 尹峰. 智能制造评价指标体系研究. 工业经济论坛, 2016, 3(6):632-641
    [23] 张毅, 袁颖, 狄龙. 大型超市生鲜物品供应商评价选择研究. 科技通报, 2017, 33(8):133-136, 242
    [24] 江志娟. 基于BP神经网络和合作博弈的供应商评价选择研究[硕士学位论文]. 沈阳:东北大学, 2008.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

陈诚,石莉,石梅,丁雪红.数据驱动下的智能制造企业供应商效率评价.计算机系统应用,2020,29(5):1-10

Copy
Share
Article Metrics
  • Abstract:1682
  • PDF: 2967
  • HTML: 1632
  • Cited by: 0
History
  • Received:September 24,2019
  • Revised:October 15,2019
  • Online: May 07,2020
  • Published: May 15,2020
Article QR Code
You are the first990800Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063