Cross-Validation BP Neural Network Stellar Spectral Classification
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As a national major scientific engineering project, LAMOST currently has the highest observation and acquisition rate of the spectrum in the world, and provides a large amount of data and information resources for the research and development of astronomy. According to the stellar spectral data file released by LAMOST, the data about the wavelength of the stellar spectrum is extracted, and the data is subjected to noise culling, data dimensionality reduction, data normalization, and data dimensionality reduction processing. The BP neural network algorithm is used to classify the data, and the pros and cons of the BP neural network model are judged according to the correct rate of the classification results. However, the BP neural network test results of the test set data do not mean that it has the same test effect on other data and is easy to produce over-fitting, so the method of cross-validation combined with BP neural network is adopted. The BP neural network algorithm can test multiple sets of different data, obtain multiple sets of test results and obtain the average value, and obtain the relatively stable test results of the BP neural network model and reduce the randomness of the results.

    Reference
    Related
    Cited by
Get Citation

刘曼云,赵正旭,郭阳,赵士伟,曹子腾.交叉验证的BP神经网络恒星光谱分类.计算机系统应用,2020,29(5):11-18

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 27,2019
  • Revised:October 22,2019
  • Adopted:
  • Online: May 07,2020
  • Published: May 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063