Image Fusion Based on Siamese Convolutional Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Traditional image fusion algorithms have many shortcomings, such as high computational complexity and inability to effectively extract image texture. To compensate these shortcomings of above traditional algorithms, an image fusion method is proposed based on the Siamese Convolutional Neural Network (Siamese CNN). First, we use the Siamese CNN to generate a weight graph, which contains all pixel information from the two images to be fused. Then, the image pyramid is fused in a multi-scale way, and the local similarity strategy is adopted to adjust the decomposition coefficient adaptively. Finally, several existing image fusion methods are compared. Experimental results show that the proposed method has sound fusion effect and is practical to some extent.

    Reference
    Related
    Cited by
Get Citation

杨雪,郑婷婷,戴阳.基于孪生卷积神经网络的图像融合.计算机系统应用,2020,29(5):196-201

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 27,2019
  • Revised:October 22,2019
  • Adopted:
  • Online: May 07,2020
  • Published: May 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063