Rebar Surface Defect Detection Method Based on Machine Vision
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [19]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Rebar is a widely used building material, if its size and surface defects cannot be found in time in the rolling process, it will produce a large number of waste products and bring losses to the enterprise. In this study, we design a rebar surface defect detection method based on machine vision. Firstly, the skew rebar in the image is corrected by affine transformation, and then the front and side images of rebar are distinguished based on Hough transform to detect the straight line position of longitudinal rib edge. Finally, defect detection is carried out for front and side images to quickly and accurately judge whether there are defects on the surface. Experiments show that the design method has sound stability and practicality. It can effectively solve the problems of low efficiency and high false detection rate in the process of manual detection.

    Reference
    [1] 李雪峰, 王春芬, 郭海霞. HRB400螺纹钢表面缺陷形成原因分析. 理化检验-物理分册, 2013, 49(6):413-415, 418
    [2] 来煜, 孔建益, 刘怀广, 等. 基于机器视觉的螺纹钢表面尺寸检测方法. 制造业自动化, 2015, 37(8):56-58, 64.[doi:10.3969/j.issn.1009-0134.2015.08.016
    [3] 王风才, 李红霞, 张洪春, 等. 高速线材表面质量缺陷及控制措施. 河北冶金, 2009, (3):47-48.[doi:10.3969/j.issn.1006-5008.2009.03.018
    [4] Ahmed R, Sutcliffe MPF. Identification of surface features on cold-rolled stainless steel strip. Wear, 2000, 244(1-2):60-70.[doi:10.1016/S0043-1648(00)00442-7
    [5] 幸玲玲, 路灿, 盛剑霓. 涡流检测中的等效源方法. 无损检测, 2000, 22(1):8-12.[doi:10.3969/j.issn.1000-6656.2000.01.003
    [6] Tang B, Kong JY, Wu SQ. Review of surface defect detection based on machine vision. Journal of Image and Graphics, 2017, 22(12):1640-1663
    [7] Zhang W, Tang XJ, Yoshida T. Text classification with support vector machine and back propagation neural network. International Conference on Computational Science. Berlin, Germany. 2007. 150-157.
    [8] Jia HB, Murphey YL, Shi JJ, et al. An intelligent real-time vision system for surface defect detection. Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK. 2004. 239-242.
    [9] Yun JP, Park C, Bae H, et al. Vertical scratch detection algorithm for high-speed scale-covered steel BIC (Bar in Coil). ICCAS 2010. Gyeonggi-do, Republic of Korea. 2010. 342-345.
    [10] Liu YC, Hsu YL, Sun YN, et al. A computer vision system for automatic steel surface inspection. 20105th IEEE Conference on Industrial Electronics and Applications. Taichung, China. 2010. 1667-1670.
    [11] 刘本迪. 基于机器视觉的工件表面缺陷检测算法的研究[硕士学位论文]. 哈尔滨:黑龙江大学, 2015.
    [12] 金贝. 基于HALCON的机器视觉教学实验系统设计[硕士学位论文]. 北京:北京交通大学, 2012.
    [13] 谢瑶, 孙以泽. 基于HALCON的印花鞋面剪裁图像处理系统设计. 计算机测量与控制, 2018, 26(8):177-181
    [14] 梅文宝. 基于形状模板匹配的手机商标检测技术研究[硕士学位论文]. 广州:广东工业大学, 2016
    [15] 贺晓佳. 灰度图像快速匹配算法研究[硕士学位论文]. 合肥:合肥工业大学, 2012.
    [16] 朱恒川. 基于机器视觉的液晶屏缺陷检测[硕士学位论文]. 成都:电子科技大学, 2018.
    [17] 黄战华, 刘正, 李金晶, 等. 一种基于多通道Gabor滤波的纹理提取方法. 仪器仪表学报, 2009, 30(4):694-698.[doi:10.3321/j.issn:0254-3087.2009.04.005
    [18] 徐增波, 贡玉南, 黄秀宝. 基于二维连续小波变换的织物疵点检测. 中国纺织大学学报, 2000, 26(2):10-13
    [19] 曾冬梅, 陈锻生. 利用双边滤波器和DoG算子的人像卡通化新算法. 华侨大学学报(自然科学版), 2014, 35(2):156-160
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

孙鸽,张运楚,赵月,万立志.基于机器视觉的螺纹钢表面缺陷检测方法.计算机系统应用,2020,29(4):32-40

Copy
Share
Article Metrics
  • Abstract:1849
  • PDF: 3305
  • HTML: 3106
  • Cited by: 0
History
  • Received:September 07,2019
  • Revised:October 08,2019
  • Online: April 09,2020
  • Published: April 15,2020
Article QR Code
You are the first990411Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063