Air Quality Calibration Algorithm Based on Catraining-LSTM
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The problem of air environment has become the focus of attention. Apart from the exhaust emissions from factories, the popularity of private cars has led to worrisome air conditions. Related government agencis have also begun to strengthen the control of air environment, and put forward relevant policies for grid monitoring of environmental quality. In this context, many micro-monitoring instruments have emerged into the market, but due to the inadequate accuracy of internal sensors, there is a problem of data deviation. In order to solve this problem, this study uses the Long Short-Term Memory (LSTM) model of neural network technology and semi-supervised learning method to improve the accuracy of monitoring data. By comparing with other models, this method achieves a sound effect.

    Reference
    Related
    Cited by
Get Citation

祁柏林,张欣,刘闽,魏景锋,杜毅明,金继鑫.基于Cotraining-LSTM空气质量校准算法.计算机系统应用,2020,29(4):170-174

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 20,2019
  • Revised:September 09,2019
  • Adopted:
  • Online: April 09,2020
  • Published: April 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063