Real-Time Drivers’ Violation Behaviors Detection Based on Improved YOLOv3-tiny Algorithm Based on Model Pruning and Half-Precision Acceleration
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to optimize the method of real-time and high-precision detection of drivers' safe driving supervision, based on the classic deep learning neural network-YOLOv3-tiny-in object detection, this study successfully uses the channel pruning technology to achieve model compression in the object detection task, and reduces the calculated total amount and parameters of the improved neural network under the condition of constant accuracy. Based on NVIDIA’s inference platform TensorRT, model level fusion and half-precision acceleration are performed, and the accelerated model is deployed. The experimental results show that the speed of inference of the acceleration model is about 2 times that of the original model, the parameter volume is reduced by half, and the accuracy is not lost, which realizes the purpose of real-time detection under high precision.

    Reference
    Related
    Cited by
Get Citation

姚巍巍,张洁.基于模型剪枝和半精度加速改进YOLOv3-tiny算法的实时司机违章行为检测.计算机系统应用,2020,29(4):41-47

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 06,2019
  • Revised:October 08,2019
  • Adopted:
  • Online: April 09,2020
  • Published: April 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063