Dual Stream Feedback Network for Image Super-Resolution Reconstruction
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Image super-resolution reconstruction has a wide range of applications, such as security systems, small object detection, and medical imaging. This study proposes a dual stream feedback network to improve the performance of image super-resolution reconstruction. In the dual-stream network, one path adapts a deep residual dense network to learn the high-frequency information of the reconstructed image, and the other path directly samples the input image to the desired resolution through a sub-pixel convolution layer. Then, the feature maps obtained from the two paths are fused to adaptively selecting the required information. Finally, using a feedback convolutional layer for locally loop training to obtain a large receptive field. By training on the dataset DIV2K, the experimental results show the effectiveness and superiority of the proposed method.

    Reference
    Related
    Cited by
Get Citation

陶状,廖晓东,沈江红.双路径反馈网络的图像超分辨重建算法.计算机系统应用,2020,29(4):181-186

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 01,2019
  • Revised:September 23,2019
  • Adopted:
  • Online: April 09,2020
  • Published: April 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063