Adaptive Density Peak Clustering Based on Fruit Fly Optimization of Self-Adjusting Step-Size
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to solve the problem of setting cut-off distance and selecting clustering center in Density Peak Clustering algorithm (DPC), a new self-adjusting step-size fruit fly optimization algorithm is used to calculate the cut-off distance and the important parameters in density peak clustering, an adaptive method for selecting clustering centers is designed. In the cut-off distance calculation process, the search step-size is dynamically adjusted according to the rate of change of the difference between the optimal concentration and the worst concentration in each step of the iterative process, and its optimization efficiency and accuracy are better than the existing improved fruit fly algorithm. In the selection process of clustering center, the clustering center is selected adaptively according to the distribution of the product of local density and distance. The computational accuracy and efficiency of the proposed algorithm are both better than the existing improved DPC algorithm, and it can realize data clustering completely adaptively.

    Reference
    [1] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究. 软件学报, 2008, 19(1):48-61
    [2] Kumar N, Verma V, Saxena V. Cluster analysis in data mining using k-means method. International Journal of Computer Applications, 2013, 76(12):11-14.[doi:10.5120/13298-0748
    [3] 贺玲, 吴玲达, 蔡益朝. 数据挖掘中的聚类算法综述. 计算机应用研究, 2007, 24(1):10-13.[doi:10.3969/j.issn.1001-3695.2007.01.003
    [4] Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science, 2014, 344(6191):1492-1496.[doi:10.1126/science.1242072
    [5] 蒋礼青, 张明新, 郑金龙, 等. 快速搜索与发现密度峰值聚类算法的优化研究. 计算机应用研究, 2016, 33(11):3251-3254
    [6] 王华秋, 聂珍. 快速搜索密度峰值聚类在图像检索中的应用. 计算机工程与设计, 2016, 37(11):3045-3050, 3057
    [7] 张萌, 吕艳, 倪益华, 等. 基于密度峰值聚类的随机森林室内定位. 计算机工程与设计, 2018, 39(5):1490-1496
    [8] 赵怀鑫, 邓然然, 张英杰, 等. 一种用于高速公路通行情况分析的收费数据挖掘方法. 中国公路学报, 2018, 31(8):155-164.[doi:10.3969/j.issn.1001-7372.2018.08.017
    [9] 赵怀鑫, 张英杰, 邓然然, 等. 基于快速峰值聚类的高速公路异常事件识别方法. 长安大学学报(自然科学版), 2018, 38(5):205-212
    [10] 王海燕, 李晓玲. 聚类评价在聚类算法选择中的应用研究. 福建电脑, 2015, 31(3):26-28.[doi:10.3969/j.issn.1673-2782.2015.03.014
    [11] 杨震, 王红军, 周宇. 一种截断距离和聚类中心自适应的聚类算法. 数据分析与知识发现, 2018, 2(3):39-48
    [12] Xie JY, Gao HC, Xie WX, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors. Information Sciences, 2016, 354:19-40.[doi:10.1016/j.ins.2016.03.011
    [13] 谢娟英, 高红超, 谢维信. K近邻优化的密度峰值快速搜索聚类算法. 中国科学:信息科学, 2016, 46(2):258-280
    [14] 曾嘉豪. 基于K近邻的密度峰值聚类算法. 中国国际财经(中英文), 2018, (5):190-191
    [15] Xiao WC, Yang Y, Xing HL, et al. Clustering algorithm based on fruit fly optimization. Proceedings of 10th International Conference on Rough Sets and Knowledge Technology. Tianjin, China. 2015. 408-419.
    [16] 周瑞红. 基于群智能优化理论的聚类改进方法及应用研究[博士学位论文]. 长春:吉林大学, 2017.
    [17] 于婷. 密度峰值聚类算法的若干改进及其应用[硕士学位论文]. 长春:吉林财经大学, 2017.
    [18] 郑虹, 周丽媛, 韩旭明. 布谷鸟优化的密度峰值快速搜索聚类算法. 长春工业大学学报, 2018, 39(3):253-260
    [19] Mehmood R, Zhang GZ, Bie RF, et al. Clustering by fast search and find of density peaks via heat diffusion. Neurocomputing, 2016, 208:210-217.[doi:10.1016/j.neucom.2016.01.102
    [20] 钱雪忠, 金辉. 自适应聚合策略优化的密度峰值聚类算法. 计算机科学与探索. http://kns.cnki.net/kcms/detail/11.5602.TP.20190418.1746.022.html. (2019-05-15).
    [21] 潘文超. 应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估. 太原理工大学学报(社会科学版), 2011, 29(4):1-5
    [22] 吴小文, 李擎. 果蝇算法和5种群智能算法的寻优性能研究. 火力与指挥控制, 2013, 38(4):17-20, 25.[doi:10.3969/j.issn.1002-0640.2013.04.005
    [23] 丁国绅, 邹海. 新型改进果蝇优化算法. 计算机工程与应用, 2019, 52(21):168-174
    [24] 桂龙, 王爱平, 丁国绅. 改进步长与策略的果蝇优化算法. 计算机工程与应用, 2018, 54(4):148-153, 184.[doi:10.3778/j.issn.1002-8331.1609-0141
    [25] 朱富占, 邹海, 丁国绅. 改进的变步长果蝇优化算法. 微电子学与计算机, 2018, 35(6):36-40
    [26] 盛超, 邹海, 朱富占. 一种新型自调节步长果蝇优化算法. 微电子学与计算机, 2019, 36(2):62-67
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

邓然然,李伟,杨荣新.自调节步长果蝇优化的自适应密度峰值聚类.计算机系统应用,2020,29(4):126-136

Copy
Share
Article Metrics
  • Abstract:1344
  • PDF: 2167
  • HTML: 1229
  • Cited by: 0
History
  • Received:August 19,2019
  • Revised:September 06,2019
  • Online: April 09,2020
  • Published: April 15,2020
Article QR Code
You are the first990365Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063